Abstract

Granulation is one of the fundamental operations in particulate processing; however, there is still need to provide insight into the complex dynamic state behavior of these units. The unsteady state of an industrial multichamber fluidized-bed granulator for urea production, with variable mass holdup, is studied under different imposed step changes in key operating variables. For the assayed disturbances, the unit dynamics is considerably slow. In fact, many important state variables (e.g., bed height, pressure drop, solid mass flow, etc.) required more than 1 h to achieve the new steady state. The observed nonsteady behavior indicates the need of an efficient control to return the system rapidly to the desired operational point. The discharge area, fluidization air flow rate, and temperature were determined to be the more appropriate manipulative variables, for granulator stability control purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.