Abstract
An unaware susceptible-aware susceptible-vaccinated-infected-recovered (SuSaV IR) epidemic disease model has been developed and extensively examined to better understand the intricate dynamics of the disease transmission with saturated recovery function. A non-linear, monotonically increasing awareness function has been incorporated and its application is contingent upon the number of infected individuals. The spreading threshold R0 and its sensitivity indices are computed to determine both the prevalence and the potential decline of the spread of disease. Contour plots have been generated to explain how alterations in key parameters affect the evolution of infected individuals. In deterministic model, the condition R0<1 ensures the global stability of a disease-free state while R0>1 indicates the presence of a globally stable prevailing state. A numerical approach has been employed to pinpoint the stability switches for R0 which indicates transcritical bifurcation. Subsequently, a corresponding stochastic model is developed to investigate the impact of random external factors represented as white noise. In addition, the global existence and uniqueness of solutions, and the asymptotic behavior of solutions in the vicinity of steady-states are exhibited in the stochastic model. In the stochastic model, the extinction threshold Res is consistently below R0 due to noise intensity, leading to quicker disease extinction. In order to elucidate the influence of parameters and noise intensities on persistence threshold Rps and extinction threshold Res, a comprehensive sensitivity analysis and the variation of each noise intensity have been performed. This study shows that treatment can be used as an effective tool for controlling the spread of disease by lowering R0 and Rps. It has been empirically observed that high environmental fluctuations can serve as a suppressive factor for disease spread in stochastic model with R0,Rps>1 and the higher noise intensities lead to a faster disappearance of the disease. It is noticed that randomness in susceptible and infected individuals can exert a more significant influence on disease mitigation. The spread of infection exhibits a noteworthy dependence on environmental fluctuations. Additionally, to combat and mitigate the spread of disease, we have executed stochastic optimal control measures. Consequently, the control strategy has emerged as a potent tools for effectively managing the propagation of disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.