Abstract

Abstract We propose a new equations describing dynamics of a complex non-stationary systems/processes from nonextensive statistical mechanics which tend to the maximum of Tsallis entropy. We consider three types of internal energy constraints. The maximum entropy states are already well investigated. But this can not be argued about the transient states which determine how the system moves to the final state. We use the Speed-Gradient principle originated in the control theory. The proposed equations allow to forecast the dynamics of complex non-equilibrium systems. Tsallis entropy is widely used in many fields of science nowadays including physics, biology, computer science and others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.