Abstract

The energy characteristics of an electron bunch accelerated by a wakefield are largely determined by the initial bunch dimensions. Present-day injectors are still incapable of ensuring the initial spatial parameters of the bunches required for their acceleration without increasing the energy spread of the bunch electrons. In connection with this, the possibility is studied of improving the energy characteristics of an accelerated bunch by precompressing it in the longitudinal direction in the stage of trapping by a wakefield. Analytic formulas are derived that describe the one-dimensional dynamics of the spatial and energy characteristics of a short (much shorter than the wakefield wavelength) electron bunch in both the trapping and acceleration stages. The analytical results obtained are shown to agree fairly well with the results from one-dimensional and three-dimensional simulations, provided that the electrons are injected into the region that is optimum for acceleration. The possibility is discussed of forming compressed bunches so as to ensure the high quality of the bunch in the course of its acceleration to high energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.