Abstract

Following parts I and II of this series, the geometry of steady states for a general convex axisymmetric rigid body spinning on a horizontal table is analysed. A general relationship between the pedal curve of the cross-section of the body and the height of its centre-of-mass above the table is obtained which allows for a straightforward determination of static equilibria. It is shown, in particular, that there exist convex axisymmetric bodies having arbitrarily many static equilibria. Four basic categories of non-isolated fixed-point branches (i.e. steady states) are identified in the general case. Depending on the geometry of the spinning body and its dynamical properties (i.e. position of centre-of-mass and inertia tensor), these elementary branches are differently interconnected in the six-dimensional system phase space and form a complex global structure. The geometry of such structures is analysed and topologically distinct classes of configurations are identified. Detailed analysis is presented for a spheroid with displaced centre-of-mass and for the tippe-top. In particular, it is shown that the fixed-point structure of the flip-symmetric spheroid, discussed in part I, represents a degenerate configuration whose degeneracy is destroyed by breaking the symmetry. For the spheroid, there are in general nine distinct classes of fixed-point structures and for the tippe-top there are three such structures. Bifurcations between these classes are identified in the parameter space of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call