Abstract

A 10 ns pulsewidth stroboscopic laser system was used to study propagation and expansion of magnetic bubble domains in 2μ stripwidth GdCoMo amorphous film devices operating at frequencies up to 1 MHz. Expansion of domains under chevron expander structures, bubble translation in a pulsed gradient field, and bubble propagation in H-I bar loops consistently indicate that the mobility is about 2m/s-Oe under usual low-drive conditions. With high drives, the mobility is found to peak at about 20 m/s-Oe, and velocities as high as 500 m/s are measured. The mechanisms of this high mobility, high velocity wall motion are not understood, but the high velocities are observed during domain expansion under chevrons, during bubble translation in a pulsed gradient field, and during bubble propagation around large disks of permalloy. No evidence of hard bubbles or bubbles which deflect in a gradient field is found in these GdCoMo films. Error-free propagation of bubble data patterns around closed H-I bar loops for more than 109cycles at 1 MHz indicates that low error rates can be obtained in the amorphous films. Furthermore the propagation of bubbles around permalloy disks at average velocities of 180 m/s indicates that yet higher data rates could be achieved if sufficiently high frequency high power drivers could be developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.