Abstract

13 mJ laser pulses from a nitrogen laser were focused onto an aluminum target in air. The target surface was perpendicular to the axis of the laser beam. A peak energy density of 1.3 J/cm2 and a power density of 80 MW/cm2 were achieved with a laser pulse duration of 16 ns. The high power density produced a transient plasma cloud that expanded explosively into the surrounding atmosphere. An initial electron density of about 1 × 1019 cm3 and an electron temperature of about 2eV were determined by optical spectroscopy. The line of sight was parallel to the surface and perpendicular to the laser beam axis. The height of the line of sight above the target surface was varied in order to gather data about the whole plasma cloud. In about 500 ns the plasma cloud expands to about 0.5 mm above the target surface, cools down to about 1.2eV and is tenfold reduced in electron density. The initial expansion velocity was determined to be about 2km/s. The experimentally determined plasma parameters were input into numerical models of target heating and plasma expansion. The numerical results outrule the so called outflow model of plasma expansion and show reasonable agreement with an effusion model. The observed discrepancies in observed and calculated plasma parameters are attributed to the fact that the theoretical models describe the plasma expansion in vacuum only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.