Abstract
PurposeThe identification of optimal drug administration schedules to overcome the emergence of resistance that causes treatment failure is a major challenge in cancer research. We report the outcomes of a computational strategy to assess the dynamics of tumor progression as a function of time under different treatment regimens. MethodsWe developed an evolutionary game theory model that combined Lotka-Volterra equations and pharmacokinetic properties with 2 competing cancer species: nivolumab-response cells and Janus kinase (JAK1/2) mutation cells. We selected 3 therapeutic schemes that have been tested in the clinical trials: 3 mg/kg Q2w, 10 mg/kg Q2w, and 480 mg Q4w. The simulation was performed under the intervals of 75, 125, and 175 days, respectively, for each regimen. The data sources of the pharmacokinetic parameters used in this study were collected from previous published clinical trials. Other parameters in the evolutionary model come from the existing references. FindingsPredictions under various dose schedules indicated a strong selection for nivolumab-independent cells. Under the 3 mg/kg dose strategy, the reproduction rate of JAK mutation cells was highest, with strongest tumor elimination ability at a 75-day interval between treatments. Prolonged drug intervals to 125 or 175 days delayed tumor evolution but accelerated tumor recurrence. Although 10 mg/kg Q2w had an obvious clinical effect in a short time, it further promotes the progress of resistant population compared with the 3 mg/kg dose. Our model suggests that 480 mg Q4w would be more valuable in terms of clinical efficacy, but complete resistant occurs earlier regardless the interval. ImplicationsThe results of this study emphasize that increasing the dose or shortening the interval between doses accelerates the evolution of heterogeneous populations, although the short-term effect is significant. In practice, the therapeutic regimen should be balanced according to the evolutionary principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.