Abstract

The article is devoted to the dynamics of sunflower cake drying in a fundamentally new acousto-convective way. Unlike the traditional (thermo-convective) method, the method proposed allows extracting moisture from porous materials without supplying heat to the sample. Thermo-vacuum drying helped to determine the absolute and relative initial moisture for the analysed samples of the sunflower cake, which equaled 313.1% and 75.8%, respectively. The kinetic curves for drying by thermo- and acousto-convective methods were obtained and analysed. A study of the acousto-convective drying of sunflower cake showed that the rate of moisture extraction depended on the resonating frequency, while there is an optimal mode in which drying proceeds from two to three times more intensively. In thermo-convective drying of sunflower cake, increasing the temperature of the drying stream twice (from 74.2°C to 127°C) reduces the duration of drying to a final absolute humidity of 40% three times. Comparing the thermo-convective and acousto-convective drying methods showed that twice as much moisture was removed from the samples dried by the (ACDP) with a flow frequency of 790 Hz and at room temperature for a 30-minute interval as with thermal convective drying with a working flow temperature of 127°C. The relaxation mathematical model used to describe the drying phenomenon and the experimental data for sunflower cake drying allows obtaining the quantitative parameters characterizing different modes and methods of drying the samples under study. The article analyses a discrete drying regime that contributes to increasing the efficiency of the acousto-convective mode of moisture extraction.

Highlights

  • Sunflower is an agricultural oilseed crop, which ranks third in the world in terms of production volumes following peanuts and soybeans [1]

  • A study of the acousto-convective drying of sunflower cake showed that the rate of moisture extraction depended on the resonating frequency, while there is an optimal mode in which drying proceeds from two to three times more intensively

  • Experiments to analyse the dynamics of heat and mass transfer in a sunflower cake require the data on the initial moisture content

Read more

Summary

Introduction

Sunflower is an agricultural oilseed crop, which ranks third in the world in terms of production volumes following peanuts and soybeans [1]. Resulting from the analysis of thermo-vacuum drying of the sunflower cake samples, the initial moisture content of the test material was determined.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.