Abstract

We report on the different regimes observed in a bipolarized neodymium-doped fiber laser self Q-switched by a thin slice of a polymer-based saturable absorber. We demonstrate the interplay between the total losses and the loss anisotropy induced respectively by defocusing the saturable absorber and by tilting the cavity mirror. Starting from a global chaotic behavior for low-losses (i.e. good cavity) configuration, the system evolves toward n-periodic (n= 4,2 and 1) regime for increasing losses (bad cavity configuration). Stabilization of the regimes depends on the anisotropic losses introduced. These regimes have been identified as to be due to non-linear coupling through saturable absorber between two distinct polarized modes. These modes have been experimentally resolved. Simple model based on a bipolarized fiber laser reproduces such dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.