Abstract
This study aims at developing an improved numerical simulation of the film boiling regime phenomenon to understand and visualize the growth of vapor bubble at a heated surface during low and high superheats. The simulation of the bubble dynamics including the bubble growth, departure, coalescence, rising, and frequency of detachment under different wall superheats is numerically investigated. The continuity, momentum, and energy equations are solved for the two immiscible fluids phases using the finite volume method. The phase change model and the results exhibited a good agreement with the theoretical models. The obtained results show that the velocity of bubble growth and its frequency of emission promotes heat exchange. It is found that the shape of a bubble has been influenced by the wall superheat. It is also found that the high superheat generates a large amount of steam in which the steam bubble takes the shape of a fungus. So, a clear correlation exists between heat transfer and the frequency of detachment. As long as the frequency is greater, the heat transfer increases. Most of the heat transfer is induced by the liquid movements associated with the vapor bubble detachment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.