Abstract
Abstract We investigate global dynamics of the following systems of difference equations x n + 1 = α 1 + β 1 x n A 1 + y n y n + 1 = γ 2 y n A 2 + B 2 x n + y n , n = 0 , 1 , 2 , … where the parameters α 1, β 1, A 1, γ 2, A 2, B 2 are positive numbers, and the initial conditions x 0 and y 0 are arbitrary nonnegative numbers. We show that this system has rich dynamics which depends on the region of parametric space. We show that the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are separated by the global stable manifolds of either saddle points or non-hyperbolic equilibrium points. We give examples of a globally attractive non-hyperbolic equilibrium point and a semi-stable non-hyperbolic equilibrium point. We also give an example of two local attractors with precisely determined basins of attraction. Finally, in some regions of parameters, we give an explicit formula for the global stable manifold. Mathematics Subject Classification (2000) Primary: 39A10, 39A11 Secondary: 37E99, 37D10
Highlights
We study the global dynamics of the following rational system of difference equations
We provide a precise description of the global dynamics of the System (1)
We show that System (1) may have between zero and three equilibrium points, which may have different local character
Summary
We study the global dynamics of the following rational system of difference equations (1). The following theorems were proved by Kulenović and Merino [2] for competitive systems in the plane, when one of the eigenvalues of the linearized system at an equilibrium (hyperbolic or non-hyperbolic) is by absolute value smaller than 1 while the other has an arbitrary value These results are useful for determining basins of attraction of fixed points of competitive maps. The following result gives information on local dynamics near a fixed point of a map when there exists a characteristic vector whose coordinates have negative product and such that the associated eigenvalue is hyperbolic. This is a well-known result, valid in much more general setting that we include it here for completeness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.