Abstract

The results of investigating the rewetting of a surface of an overheated vertical copper heater with a falling nitrogen film are presented. The influence of the Reynolds number of the film and the initial temperature of the wall overheating on the rewetting rate and the threshold temperature is shown experimentally. The experimental data that were previously obtained by the authors showed that the rewetting front propagating on a thin-walled foil is not plane and is characterized by a cellular structure with regular boiling jets and interjet zones, where the heat transfer in the wetted zone occurs in the evaporation regime. On the basis of comparison of the experimental data, it is shown that a significant increase in the thickness of the cooled wall leads to a degeneracy of the cellular structure and the rewetting-front leveling. The experimental data are compared to the results of a numerical simulation of the rewetting process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.