Abstract

We have measured the dynamics of solvation of a triplet state probe, quinoxaline, in the glass-forming ionic liquid dibutylammonium formate near its glass transition temperature Tg=153 K. The Stokes-shift correlation function displays a relaxation time dispersion of considerable magnitude and the optical line width changes systematically along the solvation coordinate. The solvent dynamics in the viscous regime is compared with the rotational behavior of the solute and with the dielectric relaxation of the ionic liquid. Among the different quantities derived from the dielectric experiments, the relaxation of the macroscopic electric field, i.e., the modulus Mt, matches best the solvent response Ct regarding time scale and stretching exponent. Many other properties are reminiscent of the behavior of polar molecular liquids which lack the ionic character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.