Abstract
We introduce stochasticity into the SIS model with saturated incidence. The existence and uniqueness of the positive solution are proved by employing the Lyapunov analysis method. Then, we carry out a detailed analysis on both its almost sure exponential stability and itspth moment exponential stability, which indicates that thepth moment exponential stability implies the almost sure exponential stability. Additionally, the results show that the conditions for the disease to become extinct are much weaker than those in the corresponding deterministic model. The conditions for the persistence in the mean and the existence of a stationary distribution are also established. Finally, we derive the expressions for the mean and variance of the stationary distribution. Compared with the corresponding deterministic model, the threshold value for the disease to die out is affected by the half saturation constant. That is, increasing the saturation effect can reduce the disease transmission. Computer simulations are presented to illustrate our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.