Abstract

In the frame work of classical mechanics, we study the nonlinear dynamics of a single ion trapped in a Penning trap perturbed by an electrostatic sextupolar perturbation. The perturbation is caused by a deformation in the configuration of the electrodes. By using a Hamiltonian formulation, we obtain that the system is governed by three parameters: the z-component of the canonical angular momentum P φ - which is a constant of the motion because the perturbation we assume is axial-symmetric -, the parameter δ that determines the ratio between the axial and the cyclotron frequencies, and the parameter a which indicates how far from the ideal design the electrodes are. We study the case P φ = 0. By means of surfaces of section, we show that the phase space structure is made of three fundamental families of orbits: arch, loop and box orbits. The coexistence of these kinds of orbits depends on the parameter δ. The escape is also explained on the basis of the shape of the potential energy surface as well as of the phase space structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.