Abstract

The dynamics of a relativistic electron beam in the vicinity of an injector in the form of a spherical conducting body in a space plasma is considered. An equation describing the radial evolution of a steady electron beam with a self-similar density profile in the electric field of the injector is formulated. A method for calculating the radial evolution of a relativistic electron beam in the vicinity of an injector is developed. The method is based on the numerical integration of a set of ordinary differential equations for the beam radius and field potential in the space charge region under the relevant boundary conditions at the injector surface. Results are presented from numerical simulations of the radial dynamics of an electron beam in the vicinity of a spherical screen system for neutralizing the electric charge carried away by the beam. The numerical results show that the electric field of the injector hastens the beam expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call