Abstract
We consider the dynamics of a quantum directional reference frame undergoing repeated interactions. We first describe how a precise sequence of measurement outcomes affects the reference frame, looking at both the case that the measurement record is averaged over and the case wherein it is retained. We find, in particular, that there is interesting dynamics in the latter situation which cannot be revealed by considering the averaged case. We then consider in detail how a sequence of rotationally invariant unitary interactions affects the reference frame, a situation which leads to quite different dynamics than the case of repeated measurements. We then consider strategies for correcting reference frame drift if we are given a set of particles with polarization opposite to the direction of drift. In particular, we find that by implementing a suitably chosen unitary interaction after every two measurements we can eliminate the rotational drift of the reference frame.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.