Abstract

We describe the bifurcation diagram of limit cycles that appear in the first realistic quadrant of the predator-prey model proposed by R. M. May [ Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1974]. In particular, we give a qualitative description of the bifurcation curve when two limit cycles collapse on a semistable limit cycle and disappear. Moreover, we show that locally asymptotic stability of a positive equilibrium point does not imply global stability for this class of predator-prey models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.