Abstract

We have used Brownian dynamics simulations to study the dynamics of a bead-and-spring polymer subject to a flashing ratchet potential. To elucidate the role of hydrodynamic (HD) interactions, simulations were carried out for the cases where HD interactions are present and when they are absent. The average speed of the polymer and its conformational properties were examined upon variation in the polymer length, N, and the ratchet spatial period, L. Two distinct dynamical regimes were evident. In the low-N/high-L regime, the velocity decreases with increasing N, and center-of-mass diffusion is a key part of the motional mechanism. By contrast, in the high-N /low-L regime, the velocity is insensitive to variation in N, and motion is achieved via the coupling of internal modes to the cycling of the ratchet potential. The location of the regimes is correlated with the average conformational state of the polymer. Incorporating HD interactions increases the average polymer velocity for all polymer lengths and ratchet spatial periods considered. The dynamical behavior of polymers in the low-N/high-L regime can be understood using simple a theoretical model that yields quantitatively reasonable predictions of the polymer velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.