Abstract

We observe the dynamics of a single magnetic vortex pinned by a defect in a ferromagnetic film. At low excitation amplitudes, the vortex core gyrates about its equilibrium position with a frequency that is characteristic of a single pinning site. At high amplitudes, the frequency of gyration is determined by the magnetostatic energy of the entire vortex, which is confined in a micron-scale disk. We observe a sharp transition between these two amplitude regimes that is due to depinning of the vortex core from a local defect. The distribution of pinning sites is determined by mapping fluctuations in the frequency as the vortex core is displaced by a static in-plane magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call