Abstract

The dynamics of formation of a nonlinear response of a double phase-conjugate (PC) BaTiO3 mirror is calculated. It is shown that because of competition between processes of different types (related to the presence of several PC channels, the local and nonlocal components of the photorefractive nonlinearity), the transient and dynamic lasing regimes for this mirror can be substantially different. It is found that the development of lasing begins with the successive formation and phasing of dynamic holograms of two different types (two PC channels). It is shown that even under optimal conditions, the lasing regime is not stationary due to competition between processes of different types, and the parameters of output fields fluctuate in time in a nontrivial way (due to the presence of the in-phase and out-of-phase components). Several scenarios of transition to the dynamic chaos are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.