Abstract

This paper is concerned with the global dynamics of a PDE viral infection model with cell-to-cell transmission and spatial heterogeneity. The basic reproduction number ℜ0, which is a threshold value that predicts whether the infection will go to extinction or not, is defined in a variational characterization. In quite a general setting in which every parameter can be spatially heterogeneous, it is shown that if ℜ0≤1, then the infection-free steady state is globally asymptotically stable, while if ℜ0>1, then the system is uniformly persistent and the infection steady state is globally asymptotically stable. The proof is based on the construction of the Lyapunov functions and usage of the Green's first identity. Finally, numerical simulation is performed in order to verify the validity of our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.