Abstract

Abstract The authors propose a systematic formulation of the dynamics of the 6-P-RR-R-RR parallel-kinematics machine (PKM) with offset RR -joints. The kinematics of the same system is reported in an accompanying paper. Based on the kinematics model developed in the former, the dynamics model of the limb-chain is derived here using the Newton–Euler equations. Then, the constraint wrenches in the governing equations of the limb-chain are eliminated with the aid of the natural orthogonal complement. This is the twist-shaping matrix, which maps the joint-rate array of the limb-chain into the twist array of the PKM. Furthermore, the dynamics model of the whole PKM with offset joints is formulated. Moreover, the actuator forces are obtained. Finally, upon validation via simulation, the dynamics model is proven to be both precise and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.