Abstract

In this paper, the effect of a squeezed parameter and parametric amplifier on squeezing and entanglement of a correlated emission laser is thoroughly analyzed. The combination of the master equation and stochastic differential equation is presented to study the quantum features of the light. Moreover, with the aid of the resulting solutions together with the correlation properties of noise operators, the quadrature squeezing and entanglement and the mean number of photon pairs of the cavity light are determined. It is found that a large amplitude of the classical driving radiation induces a strong correlation between the top and bottom states of three-level atoms to produce a high degree of squeezing and entanglement. Furthermore, the presence of parametric amplifier and squeezed parameter is found to enhance the degree of squeezing and entanglement of the cavity light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call