Abstract

A mathematical model featuring the motion of a multilink wheeled vehicle is developed using a nonholonomic model. A detailed analysis of the inertial motion is made. Fixed points of the reduced system are identified, their stability is analyzed, and invariant manifolds are found. For the case of three platforms (links), a phase portrait for motion on an invariant manifold is shown and trajectories of the attachment points of the wheel pairs of the three-link vehicle are presented. In addition, an analysis is made of motion in the case where the leading platform has a rotor whose angular velocity is a periodic function of time. The existence of trajectories for which one of the velocity components increases without bound is established, and the asymptotics for it is found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call