Abstract

This article investigates the dynamics of cancer through a coupled system of three nonlinear ordinary differential equations. The evolution of the cancer tumour is examined under the variation of the immune cell activation parameter, and the study determines the values of this parameter that cause changes in the dynamics of this evolution; these changes are a consequence of two transcritical bifurcations and a supercritical Hopf bifurcation that exist in the system. These results reveal the range of immune cell activation for which tumour escape or tumour latency, or oscillatory behavior due to the appearance of limit cycles, is achieved. In addition, an optimal value is distinguished for which a minimum number of active immune response cells is sufficient to bring the tumour to a latent state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.