Abstract
We consider a macroscopic spin qubit based on spin–orbit coupled Bose–Einstein condensates, where, in addition to the spin–orbit coupling (SOC), spin dynamics strongly depends on the interaction between particles. The evolution of the spin for freely expanding, trapped, and externally driven condensates is investigated. For condensates oscillating at the frequency corresponding to the Zeeman splitting in the synthetic magnetic field, the spin Rabi frequency does not depend on the interaction between the atoms since it produces only internal forces and does not change the total momentum. However, interactions and SOC bring the system into a mixed spin state, where the total spin is inside rather than on the Bloch sphere. This greatly extends the available spin space making it three-dimensional, but imposes limitations on the reliable spin manipulation of such a macroscopic qubit. The spin dynamics can be modified by introducing suitable spin-dependent initial phases, determined by the SOC, in the spinor wave function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.