Abstract
The present investigation deals with the dynamics of a two-degrees-of-freedom system which consists of a main linear oscillator and a strongly non-linear absorber with small mass. The non-linear oscillator has a softening hysteretic characteristic represented by a Bouc–Wen model. The periodic solutions of this system are studied and their calculation is performed through an averaging procedure. The study of non-linear modes and their stability shows, under specific conditions, the existence of localization which is responsible for a passive irreversible energy transfer from the linear oscillator to the non-linear one. The dissipative effect of the non-linearity appears to play an important role in the energy transfer phenomenon and some design criteria can be drawn regarding this parameter among others to optimize this energy transfer. The free transient response is investigated and it is shown that the energy transfer appears when the energy input is sufficient in accordance with the predictions from the non-linear modes. Finally, the steady-state forced response of the system is investigated. When the input of energy is sufficient, the resonant response (close to non-linear modes) experiences localization of the vibrations in the non-linear absorber and jump phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.