Abstract

The relation between dislocation velocity and resolved shear stress is studied computationally at the atomic scale using Molecular Dynamics simulations in a two-dimensional Lennard–Jones system. Mimicking a well known experimental technique, we apply a calibrated stress pulse to a system with a single dislocation and follow with a run-time graphics tool and displacement-field based tracking method, the dislocation motion caused by momentum transfer from an externally generated stress pulse. The empirically suggested power law relation between dislocation velocity and resolved shear stress seems to hold also in the atomic scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.