Abstract
In this paper, we consider a discrete food-limited population model with time delay. Firstly, the stability of the equilibrium of the system is investigated by analyzing the characteristic equation. By choosing the time delay as a bifurcation parameter, we prove that Neimark–Sacker bifurcations occur when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Neimark–Sacker bifurcations and the stability of the bifurcating periodic solutions are derived. Finally, some numerical simulations are given to verify the theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.