Abstract

The dynamics of a rigid cylindrical body subjected to high-frequency rotational vibration about its own axis in a liquid-filled sector of a horizontal cylindrical layer are investigated experimentally and theoretically. It is found that the vibrations generate an average force on the body which in the case of a body denser than the fluid is directed toward the axis of rotation. Under certain conditions this force exceeds the gravity force, causing the body to float. This effect is analyzed theoretically in the high-frequency low-amplitude vibration approximation. It is shown that the force detected acts on the body over the entire fluid volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call