Abstract

We study an initial–boundary value problem with free boundary for one-dimensional equations of viscous gas dynamics. The problem models the motion of a crankshaft mechanism under gas pressure. It is assumed that the gas fills a cylinder, which is modeled by the interval $$[0,1]$$ . A variable point $$a(t)\in[0,1]$$ models a piston moving inside the cylinder. The piston is assumed to be connected to a planar three-link crankshaft mechanism. We also assume that a velocity distribution on the boundary of the cylinder and a density distribution on gas inflow segments are given. The gas motion is described by the one-dimensional Navier–Stokes equations of viscous compressible fluid dynamics. It is required to determine the joint motion of the gas and crankshaft mechanism. We prove that this problem has a weak renormalized solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call