Abstract

The Landau-Zener (LZ) transition probability of a two-level crossing in a single quantum dot driven by a two-state auto-correlated (TSAC) noise is studied. The model used isolates a central electron spin (CES) system bathed with TSAC noise and an anti-ferromagnetic spin bath. This model turnes into the LZ formalism in the limit of weak-excitation magnetic field. The effects of noise and of the coupling with the spin chain, on the LZ-transition probability are studied. In the weak coupling regime of the CES with the bath, it is seen that the TSAC noise effect can be compared with that of a deterministic sinusoidal oscillating function. In the strong coupling regime this effect decreases and alters the noise process on the LZ-transition probability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call