Abstract

The emergence of a non-equilibrium Bose-Einstein-like condensation of magnons in rf-pumped magnetic thin films has recently been experimentally observed. We present here a complete theoretical description of the non-equilibrium processes involved. It it demonstrated that the phenomenon is another example of the presence of a Bose-Einstein-like condensation in non-equilibrium many-boson systems embedded in a thermal bath, better referred-to as Fr\"{o}hlich-Bose-Einstein condensation. The complex behavior emerges after a threshold of the exciting intensity is attained. It is inhibited at higher intensities when the magnon-magnon interaction drives the magnons to internal thermalization. The observed behavior of the relaxation to equilibrium after the end of the pumping pulse is also accounted for and the different processes fully described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.