Abstract

BackgroundGlobal epigenetic reprogramming is considered to be essential during embryo development to establish totipotency. In the classic model first described in the mouse, the genome-wide DNA demethylation is asymmetric between the paternal and the maternal genome. The paternal genome undergoes ten-eleven translocation (TET)-mediated active DNA demethylation, which is completed before the end of the first cell cycle. Since TET enzymes oxidize 5-methylcytosine to 5-hydroxymethylcytosine, the latter is postulated to be an intermediate stage toward DNA demethylation. The maternal genome, on the other hand, is protected from active demethylation and undergoes replication-dependent DNA demethylation. However, several species do not show the asymmetric DNA demethylation process described in this classic model, since 5-methylcytosine and 5-hydroxymethylcytosine are present during the first cell cycle in both parental genomes. In this study, global changes in the levels of 5-methylcytosine and 5-hydroxymethylcytosine throughout pronuclear development in equine zygotes produced in vitro were assessed using immunofluorescent staining.ResultsWe were able to show that 5-methylcytosine and 5-hydroxymethylcytosine both were explicitly present throughout pronuclear development, with similar intensity levels in both parental genomes, in equine zygotes produced by ICSI. The localization patterns of 5-methylcytosine and 5-hydroxymethylcytosine, however, were different, with 5-hydroxymethylcytosine homogeneously distributed in the DNA, while 5-methylcytosine tended to be clustered in certain regions. Fluorescence quantification showed increased 5-methylcytosine levels in the maternal genome from PN1 to PN2, while no differences were found in PN3 and PN4. No differences were observed in the paternal genome. Normalized levels of 5-hydroxymethylcytosine were preserved throughout all pronuclear stages in both parental genomes.ConclusionsIn conclusion, the horse does not seem to follow the classic model of asymmetric demethylation as no evidence of global DNA demethylation of the paternal pronucleus during the first cell cycle was demonstrated. Instead, both parental genomes displayed sustained and similar levels of methylation and hydroxymethylation throughout pronuclear development.

Highlights

  • Global epigenetic reprogramming is considered to be essential during embryo development to establish totipotency

  • We characterized for the first time the dynamics of 5mC and 5hmC throughout pronuclear development in equine zygotes produced by intracytoplasmic sperm injection (ICSI), independently in the maternal and the paternal pronucleus, using an immunofluorescent staining protocol optimized previously [20, 21]

  • Due to the lipid-rich cytoplasm of equine oocytes and zygotes, immunostaining was used to identify the following pronuclear stages: (1) PN0: decondensing sperm head and meiosis II finished with the second polar body extruded and the chromosomes which start to decondense, (2) PN1: the decondensed DNA of the maternal pronucleus (mPN) and paternal pronucleus (pPN) is forming two small pronuclei, (3) PN2: the pronuclei are increasing in size and start to migrate toward the center, (4) PN3: the pronuclei reached their maximum size and are in apposition and (5) PN4: the pronuclei are in apposition and display an area with a fibrillary aspect

Read more

Summary

Introduction

Global epigenetic reprogramming is considered to be essential during embryo development to establish totipotency. This epigenetic reprogramming during preimplantation embryo development, is not strictly conserved between species While this asymmetric global demethylation pattern is conserved in rat [2, 6] and human [7], some species such as rabbit [8], pig [9], goat [10] and sheep [11] failed to follow this model. In these species, no DNA demethylation is observed during the first cell cycle, regardless of the parental origin of the genome. Other species, such as cattle, show an intermediate pattern with partial demethylation of the paternal pronucleus (pPN) in the zygote [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call