Abstract

Abstract The dynamics of the 2-day wave, a type of convectively coupled disturbance that frequents the equatorial western Pacific, is examined using observations and a linear primitive equation model. A statistical composite of the wave's kinematic and thermodynamic structure is presented. It is shown that 1) the wave's wind and temperature perturbations can be modeled as linear responses to convective heating and cooling, and 2) the bulk of the wave's dynamical and convective structure can be represented with two vertical modes. The observations and model results suggest that the 2-day wave is an n = 1 westward-propagating inertio–gravity wave with a shallow equivalent depth (14 m) that results from the partial cancelation of adiabatic temperature changes due to vertical motion by convective heating and cooling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call