Abstract

Tether-net is a new active removal technology for space debris, and its deployment and capture have attracted considerable attention. This study focuses on the dynamics and simulation of self-collision of tether-net. First, the mass-spring-damper method is used to model tether-net and a line–line self-collision detection algorithm is proposed according to the geometric characteristics of tether-net. Thereafter, combined with the nonlinear collision model, the self-collision process of tether-net is studied. Two simulations of the close-up of a net with or without a target are executed to show the difference between considering and not considering the self-collision of tether-net. Results reveal that the capture process of tether-net with consideration for self-collision is different from the one without self-collision, especially after the corners of the net begin to contact each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.