Abstract

A model of time-delay recurrently coupled spatially segregated neural oscillators is proposed. Each of the oscillators describes the dynamics of average activities of excitatory and inhibitory populations of neurons. Bifurcation analysis shows the richness of the dynamical behaviors in a biophysically plausible parameter region. We find oscillatory multi-stability, hysteresis, and stability switches of the rest state provoked by the time delay as well as the strength of the connections between the oscillators. Then we derive the equation describing the flow on the center manifold that enables us to determine the bifurcation direction and stability of bifurcated periodic solutions and equilibria. We also give some numerical simulations to support our main results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.