Abstract
The U6 RNA intramolecular stem-loop (ISL) structure is an essential component of the spliceosome and binds a metal ion required for pre-messenger RNA splicing. The metal binding internal loop region of the stem contains a partially protonated C67-(+)A79 base pair (pK(a) = 6.5) and an unpaired U80 nucleotide that is stacked within the helix at pH 7.0. Here, we determine that protonation occurs with an exchange lifetime of approximately 20 micros and report the solution structures of the U6 ISL at pH 5.7. The differences between pH 5.7 and 7.0 structures reveal that the pH change significantly alters the RNA conformation. At lower pH, U80 is flipped out into the major groove. Base flipping involves a purine stacking interaction of flanking nucleotides, inversion of the sugar pucker 5' to the flipped base, and phosphodiester backbone rearrangement. Analysis of residual dipolar couplings as a function of pH indicates that base flipping is not restricted to a local conformational change. Rather, base flipping alters the alignment of the upper and lower helices. The alternative conformations of the U6 ISL reveal striking structural similarities with both the NMR and crystal structures of domain 5 of self-splicing group II introns. These structures suggest that base flipping at an essential metal binding site is a conserved feature of the splicing machinery for both the spliceosome and group II self-splicing introns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.