Abstract

This paper is concerned with the diffusive Leslie–Gower prey–predator model with weak diffusion. Assuming that the diffusion rates of prey and predator are sufficiently small and the natural growth rate of prey is much greater than that of predators, the diffusive Leslie–Gower prey–predator model is a singularly perturbed problem. Using travelling wave transformation, we firstly transform our problem into a multiscale slow-fast system with two small parameters. We prove the existence of heteroclinic orbit, canard explosion phenomenon and relaxation oscillation cycle for the slow-fast system by applying the geometric singular perturbation theory. Thus, we get the existence of travelling waves and periodic solutions of the original reaction–diffusion model. Furthermore, we also give some numerical examples to illustrate our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.