Abstract
The study presents the dynamic analysis of the hydraulic cylinders operated in the powered roof support sections as an important part of the longwall underground mining complexes. This type of hydraulic unit is subjected to frequent shock impacts from the significant rock masses released on the top of mined caverns. Hydraulic props are equipped with safety valves with steel helical springs, which intend to reduce peak loads by the relief of internal pressure. These valves respond to shock with a time delay due to the limited velocity of the pressure wave inside the cylinder and an additional pipe of a small section, which restricts fluid flow in outer space. The new approach represented in this paper is based on mathematical modelling of the interaction of the hydraulic and mechanical parts and using additional signals to control safety valves. Detection of shock in advance (0.02-0.05 s) allows reducing pressure peaks by 30% and avoid failures. The challenges are the development of a “smart valve” with optimised control functions by the signals from additional sensors (vibration, deformation, piston position) and providing fast reaction time with a high flow rate under pressures up to 100 MPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Earth and Environmental Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.