Abstract
We study the steady-state low-temperature dynamics of an elastic line in a disordered medium below the depinning threshold. Analogously to the equilibrium dynamics, in the limit T-->0, the steady state is dominated by a single configuration which is occupied with probability 1. We develop an exact algorithm to target this dominant configuration and to analyze its geometrical properties as a function of the driving force. The roughness exponent of the line at large scales is identical to the one at depinning. No length scale diverges in the steady-state regime as the depinning threshold is approached from below. We do find a divergent length, but it is associated only with the transient relaxation between metastable states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.