Abstract
The complex vocalizations found in different bird species emerge from the interplay between morphological specializations and neuromuscular control mechanisms. In this work we study the dynamical mechanisms used by a nonlearner bird from the Americas, the suboscine Pitangus sulphuratus, in order to achieve a characteristic timbre of some of its vocalizations. By measuring syringeal muscle activity, air sac pressure, and sound as the bird sings, we are able to show that the birds of this species manage to lock the frequency difference between two sound sources. This provides a precise control of sound amplitude modulations, which gives rise to a distinct timbral property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.