Abstract

The impact of atom substitution on the glycoside linkage bridging the head and the tail parts in a nonionic surfactant molecule on aqueous dynamics of the resultant micellar solutions has been explored, employing time-resolved fluorescence and dielectric relaxation (DR) measurements. We have utilized n-octyl-β-D-glucopyranoside (OG) and n-octyl-β-D-thioglucopyranoside (OTG) as nonionic surfactants where the oxygen atom in the glucopyranoside unit is substituted by a sulfur atom. The substitution impact is immediately reflected in the dynamic light scattering measurements of aqueous solutions where the estimated size of the OTG micelles is found to be approximately four times larger than the OG micelles. Steady state spectral features obtained by using a fluorescent probe solute, coumarin 153 (C153), in these micellar solutions are quite similar and indicate locations of the solute at the micelle/water interface for both the surfactants. Interestingly, significant differences in the rotational and solvation dynamics of C153 in these two micellar solutions have been registered. The corresponding DR measurements do not indicate any signature of relaxation typical of bound water. The absence of bound water is further supported by the differential scanning calorimetric measurements. However, the typical slow solvation time scale for aqueous micellar solutions has been observed for these surfactants. Fluctuations in the solute-interface interaction energy due to the solute motion has been argued to be the origin for this slow solvation component as DR measurements do not indicate the presence of qualitatively similar relaxation time scale in the medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call