Abstract
Recent advances on the glass problem motivate reexamining classical models of percolation. Here we consider the displacement of an ant in a labyrinth near the percolation threshold on cubic lattices both below and above the upper critical dimension of simple percolation, d_{u}=6. Using theory and simulations, we consider the scaling regime and obtain that both caging and subdiffusion scale logarithmically for d≥d_{u}. The theoretical derivation, which considers Bethe lattices with generalized connectivity and a random graph model, confirms that logarithmic scalings should persist in the limit d→∞. The computational validation employs accelerated random walk simulations with a transfer-matrix description of diffusion to evaluate directly the dynamical critical exponents below d_{u} as well as their logarithmic scaling above d_{u}. Our numerical results improve various earlier estimates and are fully consistent with our theoretical predictions.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.