Abstract

We investigate the conformation, position, and dynamics of core-shell nanoparticles (CSNPs) composed of a silica core encapsulated in a cross-linked poly( N-isopropylacrylamide) shell at a water-oil interface for a systematic range of core sizes and shell thicknesses. We first present a free-energy model that we use to predict the CSNP wetting behavior at the interface as a function of its geometrical and compositional properties in the bulk phases, which is in good agreement with our experimental data. Remarkably, based on the knowledge of the polymer shell deformability, the equilibrium particle position relative to the interface plane, an often elusive experimental quantity, can be extracted by measuring its radial dimensions after adsorption. For all the systems studied here, the interfacial dimensions are always larger than in bulk and the particle core resides in a configuration, wherein it just touches the interface or is fully immersed in water. Moreover, the stretched shell induces a larger viscous drag at the interface, which appears to depend solely on the interfacial dimensions, irrespective of the portion of the CSNP surface exposed to the two fluids. Our findings indicate that tailoring the architecture of CSNPs can be used to control their properties at the interface, as of interest for applications including emulsion stabilization and nanopatterning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.