Abstract

A free-floating space robot equipped with multiple reconfigurable manipulators is designed and investigated in this paper. Lockable passive cylindrical joints (PCJs) are utilized to make the manipulator have the ability of changing its length and twisted angle. Each cylindrical joint, connecting two adjacent rigid links, has no embedded actuators but a brake mechanism. Normally, the mechanism is locked during the operation. When in the reconfiguration stage, two manipulators grasp each other to form a closed loop. Then one PCJ is unlocked, whose relative rotation and translation can be changed by the active torques at other joints. This system is a typical space multibody system. The dynamics of the space robot with unlocked cylindrical joints and a closed structural loop is investigated. The equations of motion are derived through Maggi–Kane's method. The obtained mathematical model is free of multipliers, which makes it suitable for controller design. A trajectory planning algorithm capable of avoiding the configuration singularity of the manipulators is proposed. A slide mode controller embedded with an extended state observer (ESO) is designed for the trajectory tracking control. Numerical simulations demonstrate the effectiveness of the trajectory planning and control strategy for the reconfiguration process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.