Abstract

We study the complex dynamics of a two-dimensional suspension comprising non-motile active particles confined in an annulus. A coarse-grained liquid crystal model is employed to describe the nematic structure evolution, and is hydrodynamically coupled with the Stokes equation to solve for the induced active flows in the annulus. For dilute suspensions, coherent structures are captured by varying the particle activity and gap width, including unidirectional circulations, travelling waves and chaotic flows. For concentrated suspensions, the internal collective dynamics features motile disclination defects and flows at finite gap widths. In particular, we observe an intriguing quasi-steady-state at certain gap widths during which $+1/2$-order defects oscillate around equilibrium positions accompanying travelling-wave flows that switch circulating directions periodically. We perform linear stability analyses to reveal the underlying physical mechanisms of pattern formation during a concatenation of instabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.