Abstract

Magnetic skyrmions are attracting much attention due to their nontrivial topology and high mobility to electric current. Nevertheless, suppression of the skyrmion Hall effect and maintaining high velocity of skyrmions with low energy cost are two major challenges concerning skyrmion-based spintronic devices. Here we show theoretically that in a nano-beam suffering appropriate bending moment, both Bloch-type and Néel-type skyrmions move with a vanishing Hall angle under a current density smaller than that required when the bending is absent. Moreover, bending alone can be used to move skyrmions, whose velocity is solved analytically from the Thiele equation. Generally speaking, inhomogeneous elastic fields affect the stability and dynamics of skyrmions, where the local stability is dominantly determined by the local bulk stress. These findings throw new light on how to drive skyrmions in a straight line with lower energy cost, which is vital for utilizing skyrmions as information carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.